
16 CROSSTALK The Journal of Defense Software Engineering May 2005

Many organizations are looking seri-
ously at agile methods to see if there

are benefits to be gained across a broader
range of projects. Unfortunately, today
these methods are often misunderstood
and misapplied. To aid understanding, let
us start with some fundamentals and mis-
perceptions.

The Agile Manifesto, which was put
together by the founders of many of the
most popular agile methods, contains four
value statements:

• We value individuals and interac-
tions over processes and tools.

• We value working software over
documentation.

• We value customer collaboration
over contract negotiation.

• We value responding to change
over following a plan. [1]

A key agile value is customer collabora-
tion. This value can be observed through
User Stories [2] that are employed by
eXtreme Programming (XP) for require-
ments. User Stories are intentionally high-
level with details worked out collaborative-
ly and informally between developer and
customer. Nevertheless, I have heard a
customer say, “I do not see how agile can
help, because I need all my requirements.”
The belief that agile means that customers
must live without all requirements is a mis-
perception.

Another common agile value is work-
ing software demonstrated to customers
often through short development itera-
tions. The motivation for this value is the
belief that a better way to ensure customer
needs are met is through working software
rather than through formal written words.

In response, I have heard customers
and contractors say the following:
• “The lack of up-front planning and re-

quirements on agile projects leads to
chaos.”

• “Short iterations do not work on large
projects because there isn’t time to get
the design done.”

• “Short iterations on complex projects
lead to team burnout.”
To motivate and provide greater

insight, let us now discuss six agile myths.

Myth 1:Agile Methods Do Not
Include Plans and Requirements
Many who claim to be agile are in fact
using a code-and-fix approach. Agile is not
code and fix. It is both incremental and
iterative; however, its iterative aspect is
often misunderstood. Iterative means that
inside each increment there are smaller
cycles of development occurring (each
usually from four to 12 weeks).

The important point often missed is
that each iteration is not just code, but
includes plans, requirements, design, code,
and test. Those familiar primarily with tra-
ditional development methods used on
large projects often do not understand
how this is possible. The key to agile lies in
the fact that the activities, their sequence,
and the resultant agile artifacts are not tra-
ditional.

If you are a customer or manager
familiar only with traditional development
methods and you want to take advantage
of agile methods, then you will want to
know how to distinguish agility from code
and fix. Understanding a few practical
rules can help.

Practical Rule 1: Every Agile Iteration
Is Planned and Measured Regardless
of Iteration Length [3]
Agile projects use a two-tier approach to
plans: a long-term, coarse-grained plan,
and a short-term, fine-grained plan. [4].
On agile projects, planning occurs contin-
ually to ensure the team is always focused
on the most important things now. I was asked
by one client, “How can I tell if my team

is really doing agile planning, or just react-
ing to the next fire?” Asking your team the
following two questions can help.
• Question 1: “How do you determine

the most important things?” After you
ask this question, listen for the word
risk. If your team is really doing agile
planning, you should hear how the
risks perceived by both the develop-
ment team and the customer are being
handled collaboratively. Teams that are
reactive often do not take time to col-
laborate.

• Question 2: “How do you reflect the
results of your continual planning?” If
you hear, “We are agile so we do not
document our plans,” then your team is
not agile. Contrary to what you might
have heard, agile teams do document
their plans, but the resultant planning
artifacts look different. Examples of
agile planning artifacts are allocation of
user stories to iterations, and task sign-
up sheets.

Myth 2: Agile Methods Do Not
Allow Requirements Control 
Agile methods do not guarantee require-
ments control, but they do allow it. One
way requirements can be controlled with
agile methods is to use two levels of
requirements. The first level is the high-
level User Stories that scope the complete
project. This level includes features that
have not yet been fully analyzed. In Scrum
this potential work is placed on what is
referred to as the Product Backlog.

The second level of requirements is
developed collaboratively with the cus-
tomer and establishes in greater detail and
clarity the work and priorities for the next
iteration. In Scrum this work is referred to
as the Sprint Backlog.

Not long ago, the company president
of one of my agile clients was having a
beer with one of his customers. As the

Extending Agile Methods:A Distributed Project and
Organizational Improvement Perspective 

Paul E. McMahon
PEM Systems

It has been argued that agile methods only work for small, collocated, self-directed teams
that include on-site customers. But what if your customer cannot be on-site full-time, or
your development team is distributed around the world, or your developers lack self-direct-
ed team skills? Does this mean you cannot take advantage of agile methods? This arti-
cle presents a case for using key agile practices along with recommended extensions on a
broader range of projects, including large and physically distributed efforts. The article
motivates the use of agile methods by exposing common myths and providing information
that can help managers and customers facilitate practical agility within their organizations.

Tuesday, 19 April 2005
Track 7: 4:50 – 5:35 p.m.

Room 251 A-C

 



Extending Agile Methods:A Distributed Project and Organizational Improvement Perspective 

May 2005 www.stsc.hill.af.mil 17

customer was explaining a desired feature,
the president looked the customer in the
eye and said, “We can do that.” A few
weeks later the customer was observing a
demonstration of the current iteration
software and became upset because he did
not see the desired feature.

It is worth noting that the customer’s
desired feature referred to in this story
may or may not be within the scope of the
current requirements. To ensure require-
ments are controlled, I recommend that
customer requests such as these be first
placed on the Product Backlog. Once this
potential work is analyzed, clarified, and
approved, it may then be placed on the
Sprint Backlog. The Sprint Backlog is fixed
at the start of each iteration.

The point of the story is simple.
Customer collaboration does not mean the
contractor must implement everything the
customer asks for. With agile, there can
still be out-of-scope requests. The agreed-
to detailed requirements are established
collaboratively by the customer and con-
tractor for each iteration.

Practical Rule 2: The Work for Each
Agile Iteration Is Fixed At the Start
of Each Iteration [3]
While these practical rules may seem obvi-
ous, do not dismiss them lightly. With agile
methods we have few prescriptive rules –
and this can aid team productivity – but
only if those few rules are consistently fol-
lowed to keep the agile team from falling
into chaos.

It is worth noting here that Alistair
Cockburn pointed out to me that while
this type of rule is a good starting place,
some advanced agile groups allow more
dynamic changes to the content of an iter-
ation. This has been referred to as
Dynamic Scrum [5].

Myth 3:The Schedule Never
Slips With Agile Methods 
While it is true that with agile methods we
keep each iteration a fixed length, this does
not mean the schedule never slips. I rec-
ommend planning with a buffer iteration at
the end that starts with no stories allocated
to it. This gives management the time to
take action by moving incomplete work to
the buffer. But when the buffer overflows,
you must add another iteration and own
up to a schedule slip. This addresses the
customer concern of not getting all their
requirements.

Myth 4: Agile Methods Are
Only for Programmers 
Agile methods do help programmers, but

the benefits extend far beyond code. At
the 2004 Systems and Software
Technology Conference (SSTC), the U.S.
Government’s Top 5 Quality Software
Projects for 2003 were awarded. At this
presentation, Linda Crabtree, a
Development Group lead on the Patriot
Excalibur Project (one of the award win-
ners), talked about how her project was
having trouble meeting schedules and
keeping the customer satisfied [6]. After
her team adopted XP, they began to hit
their schedules more consistently, and cus-
tomer satisfaction increased.

To understand how an agile method
can have such a dramatic effect requires a
deeper understanding of the first agile

value. Traditionally, we plan new projects
based on similar past projects. Schedules
are often developed assuming personnel
with skills similar to those on past projects
will be assigned.

Agile is different. With agile, instead of
predicting schedule performance based on
results from a different project with differ-
ent people, we plan our team velocity con-
tinuously based on the actual team’s cur-
rent performance. With agile methods, this
is possible because of the short iterations
that provide actual team results early and
often. Keeping each iteration a fixed
length, referred to as time-boxing, is key to
accurate velocity measurement.

Patriot Excalibur is not the only project
reporting positive project management
results using agile methods. I and other
conference attendees heard a similar
report at the 2004 SSTC from David
Webb, a technical program manager for
the Software Division of Hill Air Force
Base [7].

Through agile methods, we are learn-
ing that people are not commodities. That
is, you cannot just pull one individual off a
project and plug another in and expect to
get the same results. This fact does not
change as projects increase in complexity
or size.

It is important to note here that key to
both of these reported successes was not
only early visibility of actual team velocity,
but also a customer willing to collaborate,
as was reported by both Crabtree and
Webb.

Myth 5:You Get No Design
With Agile Methods 
I heard a manager in a large company say,
“We tried Scrum [8], but I wouldn’t rec-
ommend it because we ended up with no
design.” Some mistakenly believe there is
not time to get design done when using
agile methods.

What is different with agile is when the
design is done. With agile, we do not limit
design to a fixed time slot within a fixed
phase. In fact, we encourage deferring
design details – not skipping them. What is
often missed by those comparing agile to
traditional methods is the extensive cost of
design rework that frequently occurs dur-
ing integration with traditional methods.

Agile encourages doing design at the optimum
time (e.g. when data is available and high-level
requirements have been clarified) to minimize
rework and thereby maximize overall team velocity.

When you hear someone say, “We
ended up with no design,” what they often
mean is that they ended up with no docu-
mentation of the design. This leads to the
next myth.

Myth 6: Agile Methods Do Not
Allow Documentation
Note that the second Agile Manifesto
value is a relative statement. It is a myth
that agile methods do not allow documen-
tation. However, most agile methods are
silent on this subject, leaving documenta-
tion decisions up to the project [4]. This
includes both deliverable documentation
and process documentation (e.g., action
items, meeting minutes). This subject has
also been referred to as the ceremony of the
project [9].

When making documentation deci-
sions, recognize that it is not a matter of
being agile or not agile. There exists vary-
ing levels of agility, but when planning
your project’s ceremony, be aware that
short iterations and high ceremony may
place your project schedule at high risk.

Now let us turn our attention to
extending agile methods to a broader

“With agile, instead of
predicting schedule

performance based on
results from a different
project with different
people, we plan our

team velocity
continuously based on

the actual team’s current
performance.”



Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering May 2005

range of projects, including physically dis-
tributed efforts.

Extending Agile to Large and
Distributed Projects
After working on three failed multi-organ-
ization physically distributed projects in
the late 1990s, I spent a year researching
similar projects looking for causes and
solutions [10]. At the heart of the difficul-
ties, I found communication breakdown
leading directly to increased project inte-
gration risk. A colleague brought to my
attention that the solutions I was advocat-
ing had similarities to the agile movement.
Ironically, many of the agile experts were
saying do not try these practices on large
and distributed efforts.

If you attempt agile methods out of the
box on large and distributed projects, you
are likely to fail. This is because these
methods require extensions to work on
more complex projects. As I discuss these
extensions, I will also explain some of the
wrong ways to extend agile methods.

For example, recognizing the need to
address the integration risk some distrib-
uted projects in the past have employed
heavyweight architectures (e.g., formal front-
end design reviews, extensive presenta-
tions, lengthy written documents). These
same teams often failed to deliver accept-
able working software. You can fail by col-
laborating too much, too little, or in the
wrong places.

Recommended Extension 1:Agile
Architecture 
I recommend employing agile architecture,
which involves first setting up an agile archi-
tecture team. Think of agile architecture like
agile requirements – there are two levels.
At the first level, a small strategically select-
ed team rapidly develops a high-level agile
architecture and documents the results.
The goal of the agile architecture is to
address the complete project scope and
provide a minimum set of architecture
compliance rules (e.g., hardware platform
requirements, minimum interfacing rules).

The resultant product of the first level
is a thin architecture document that
includes a simple, high-level (but com-
plete) diagram showing the major system
components. This document also includes
high-level assumptions and a brief
description of each component.

Agile architecture is similar to User
Stories in that it represents a commitment
to talking to solve detailed architecture
issues collaboratively with the agile teams
during each iteration. Key to keeping the
architecture agile is communicating the

simple high-level diagram and the mini-
mum compliance rules to each agile team.
At the second level, the agile architecture
team focuses on the high-risk areas for
each iteration. Cockburn has referred to
these areas as the big rocks [11].

Each specific architecture solution is
documented by the agile architecture team
through a lightweight position paper. These
position papers may be maintained sepa-
rately, or appended to the thin architecture
document. The architecture grows over
time as the solutions accumulate. Crucial
to agile architecture scalability is the strate-
gically selected architects who use their
experience to determine where the archi-
tecture is best kept simple, and where the
big rocks lie.

The use of agile architecture has been
proven to be successful on past large dis-
tributed projects that have employed
hybrid agile methods [12]. XP refers to
metaphor [13] to address architecture, but
metaphor is too weak for many complex
efforts, especially when the team members
do not reside at the same location.

Scaling Up Agile Teams:
The Wrong Way 
While communication breakdown plagues
many large distributed efforts, improved
team communication rests at the core of
agile team success. Key to this improved
team communication is the self-directed
daily stand-up meeting.

I heard a manager on a large project
that was attempting to scale up an agile
method say, “We cannot afford a manager
for every six to eight people.” His project
was holding daily stand-up meetings with
more than 30 people. Unfortunately, when
you scale up daily stand-up meetings this
way the meetings tend to lose their self-
directed quality.

Scaling up agile teams and maintaining
improved team communication can be
tricky. I recommend keeping the agile
team’s stand-up meetings to a reasonable
size (less than 10), even if the full project
has 500 or more people. Critical to the
success of the daily stand-up meeting is
the individual. Each must be heard. When
stand-up meetings get too large, leaders
start directing rather than listening and
agile benefits are lost.

Some misunderstand the role of the
agile team lead (e.g., ScrumMaster, XP
Coach/Tracker) [8, 13]. A primary respon-
sibility of the lead is to listen and then do
everything possible to remove obstacles
that are hindering the team. Too often this
critical role is understaffed, especially
when organizations attempt to scale up

agile methods inappropriately. When the
lead is not available to work on issues
daily, communication breaks down and
the team loses velocity – along with the
key benefits of agile methods.

Another pitfall that has been observed
when scaling up agile methods on large
projects is a stovepipe-mentality among the
individual agile teams. In other words,
when a large project is partitioned into
many small agile teams, improved commu-
nication inside each team may occur as
expected, but at the expense of reduced
communication across the full project.

Recommended Extension 2:
Use Super Leads to Scale Up
Agile the Right Way
One way to scale up agile methods and
avoid the pitfalls discussed is to use super
leads. Each super lead may oversee
between three and five agile teams. It is
important to understand that the super
lead is not the agile team lead. Super leads
may or may not attend daily stand-up
meetings but if they do, they do not speak.
The super lead’s role is primarily a men-
toring role for less experienced agile team
leads, and a communication role.

Super leads review agile team plans
and metrics (e.g., velocity charts) provid-
ing feedback directly to the agile team lead
– not the team members. This approach
can help address the observed lack of self-
directed team skills on many large and dis-
tributed efforts. It is important that the
super leads do not direct the agile teams;
otherwise, we risk losing a primary benefit
of agile methods – improved visibility of
real status early and often.

The super lead oversees multiple agile
teams with an eye on cross-team commu-
nication, ensuring the agile architecture
team is engaged at the right time. This can
reduce the stovepipe mentality.

I heard one agile team lead say, “The
short iterations are causing my team to get
burned out.” This comment might be a
warning sign to a super lead that help is
needed. A key to successful implementa-
tion of agile methods is a self-directed
team that can measure its own velocity,
project its future velocity, and communi-
cate the results up the chain. If an agile
team finds itself working 80-hour weeks,
this is a sign that they may not be accu-
rately measuring their velocity, or they are
not controlling their work tasks, or they are
not communicating effectively the real sta-
tus up the chain. A more experienced agile
team lead will be able to spot these signs
and help get the team back on course.

Even if they are in short supply, using
your best leaders across multiple teams

 



Extending Agile Methods:A Distributed Project and Organizational Improvement Perspective 

May 2005 www.stsc.hill.af.mil 19

can help facilitate communication on large
and distributed projects, as well as help
jumpstart agility on a broader scale in your
organization.

It is worth noting that the super leads
may meet periodically as a team. A similar
concept (Scrum of Scrums) has been dis-
cussed by Ken Schwaber on scaling of
agile methods [8].

Recommended Extension 3: Use
Super Leads as Customer Proxies
and to Aid Customer Communication
Often, especially on larger projects, cus-
tomers cannot be on-site full-time. A pri-
mary motivator for having an on-site cus-
tomer is to answer questions quickly so
the agile team does not lose velocity.
Sometimes customer proxies (e.g., subject
matter expert) can serve this purpose,
especially on large and distributed proj-
ects. When super leads are employed who
also have domain experience, they can
sometimes fill this role. Even if the super
lead does not know the answer they might
know who to call. The potential value can
extend beyond just getting an answer to
the immediate question.

I heard an agile team lead say, “My cus-
tomer’s travel budget was cut, so I haven’t
talked to him in a month.” Just because
your customer cannot be on-site does not
mean you cannot build a strong relation-
ship. As an example, if your customer can-
not be at your daily stand-up meeting,
consider institutionalizing a periodic
phone call.

A key to agile team success is close col-
laboration with the customer. As projects
scale up and people get busy it is easy to
stop talking to the customer. With today’s
virtual communication options and what
we know about the importance of cus-
tomer collaboration for success, physical
location and project size are no excuse for
lack of communication [10]. It is worth
noting here that most agile methods do
not require an on-site customer. It is, how-
ever, a required practice of XP [13].

Recommended Extension 4:
Lightweight Guides and Enablers 
Some believe that with agile methods the
written word becomes less important. In
fact, what we have found is that when we
extend agility to large and distributed
efforts the written word takes on
increased importance [10].

This is largely because we cannot get
to every individual face-to-face on large
projects every day. But this does not mean
these projects cannot still gain the benefits
of agility. However, to do so requires that
personnel be trained in what needs to be

written, how to write it from an agile per-
spective, and – just as important – what is
best left unwritten and handled through
less formal means.

I recommend that organizations devel-
op lightweight process enablers to help
guide agile teams. It is worth noting that I
do not recommend tailoring down heavy-
weight processes in support of agile meth-
ods. This has been shown to be fraught
with difficulties. I also recommend that
organizations institute leadership-at-a-dis-
tance training for those who must collab-
orate with team members and customers
who cannot always be physically present.

Conclusion 
Some have asked, “How can you be agile
and collaborate?” Just watch an agile team
in action in a daily stand-up meeting and
you will see the right level of collaboration
focused on the right things, without wast-
ing time on unimportant matters.

Agile is not about customers living
without all requirements; it is about break-
ing through to the grassroots level, mak-
ing real status visible and acted upon
sooner, which ultimately provides greater
value to the customer.

Organizations of all sizes are today
taking a serious look at agility. If it is not
happening in your organization yet, you
might be missing the next big velocity
boom!u

References
1. Cockburn, Alistair. Agile Software

Development. Addison-Wesley, 2002:
215-218.

2. Cohn, Mike. User Stories Applied.
Addison-Wesley, 2004.

3. Larman, Craig. Agile and Iterative
Development: A Manager’s Guide.
Addison-Wesley Professional, Aug.
2003.

4. Cockburn, Alistair. Crystal Clear: A
Human-Powered Methodology for
Small Teams. Addison-Wesley, 2004.

5. Sutherland, Jeff. “Continuous Scrum.”
Scrum Study Group Registry. 9 Feb.
2005 <http://wiki.scrums.org/index.
cgi?ContinuousScrum>.

6. Crabtree, Linda. “U.S. Government’s
Top 5 Quality Software Projects for
2003.” 2004 Systems and Software
Technology Conference, Salt Lake
City, UT, 21 Apr. 2004 <www.stsc.
hill.af.mil/crostalk/2004/07/0407Top
5_PEX.html>.

7. Webb, David. “Combining Discipline
and Agility: Using Agile Techniques to
Enhance the Team Software Process.”
2004 Systems and Software Technolo-
gy Conference, Salt Lake City, UT, 20

Apr. 2004 <www.stc-online.org/sstc
2004proc/cfmfiles/PresentInfoEntry.
cfm?abid=251>.

8. Schwaber, Ken. Agile Project Man-
agement with Scrum. Microsoft Press,
2004.

9. Kroll, Per. The Rational Unified
Process Made Easy. Addison-Wesley,
2003.

10. McMahon, Paul. E. Virtual Project
Management: Software Solutions for
Today and the Future. St. Lucie Press,
2001.

11. Cockburn, Alistair. “Extending an
Architecture As It Earns Business
Value.” Technical Report TR 2004.
Salt Lake City, UT: Humans and
Technology, 14 Jan. 2004 <http://
alistair.cockburn.us/crystal/articles/
eaaaiebv/extendinganarchitecture.
htm>.

12. Procuniar, Don, Paul McMahon, and
Dennis Rushing. “AVCATT-A: A Case
Study of a Successful Collaborative
Development Project.” Interservice/
Industry Training, Simulation and
Education Conference, Orlando, FL,
26-29 Nov. 2001.

13. Beck, Kent. eXtreme Programming
Explained: Embrace Change. Addi-
son-Wesley, 2000.

About the Author

Paul E. McMahon is
principal of PEM
Systems, which helps
large and small organiza-
tions as they move
toward increased agility.

He has taught software engineering at
Binghamton University and conducted
workshops on engineering process and
management. McMahon is author of
more than 25 articles, including two on
agile development in the October 2002
and May 2004 issues of CrossTalk,
and author of “Virtual Project
Management: Software Solutions for
Today and the Future.” McMahon is a
frequent speaker at industry confer-
ences, including the Systems and
Software Technology Conference.

PEM Systems
118 Matthews ST
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org


